
Long lived chargino in the MSSM and impact of LHC searches

Suchita Kulkarni

Elise - Richter Fellow

Team members

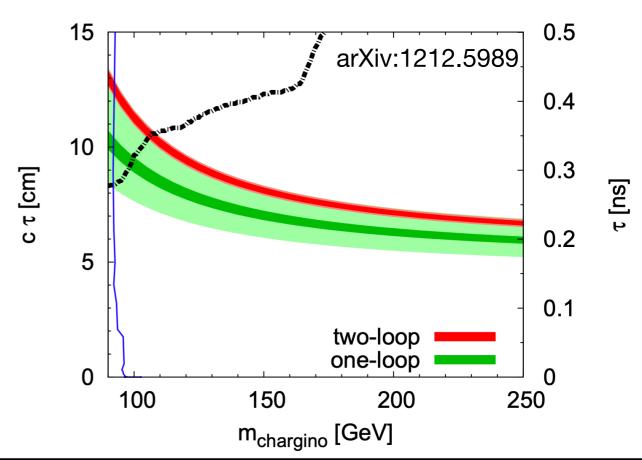
- A truly Snowmass project: discussions started after last EF10 ino meeting
 - Amit Adhikary
 - Biplob Bhattacharjee
 - Rohini Godbole
 - Suchita Kulkarni
 - Rakhi Mahbubani
 - Rhitaja Sengupta
- Includes four aspects:
 - Review of theoretical loop calculations for chargino lifetimes
 - Comparison of theory calculations with predictions from spectrum generators
 - Reinterpretation for LHC DT/HSCP searches for chargino LLP
 - Demonstration of validity of 'effective' simplified models

Review theory calculations

- Long lived particles result either from small mass splitting (chargino in MSSM) or from suppressed couplings (heavy neutrino in neutrino mass models)
- Lifetime crucially depends on mass splitting

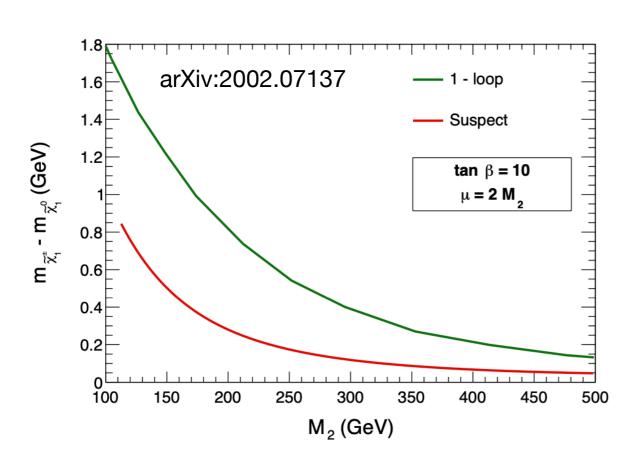
$$c au \propto rac{1}{\Delta M}$$

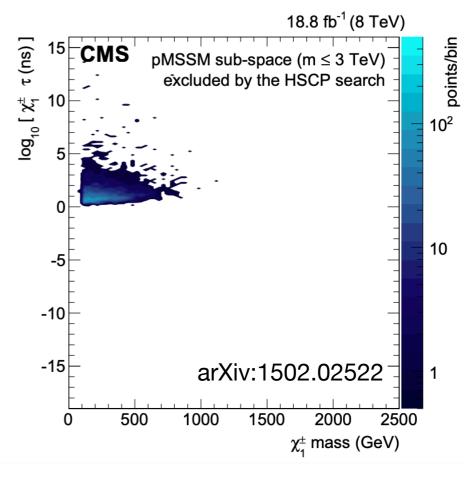
- Mass splitting dictates 'hardness' of final state objects at the experiments and therefore controls the search design
- Question: For long lived chargino in the MSSM what is the correct theory prediction for mass splitting?
- Loop corrections are very important to accurately answer this question


Chargino in MSSM

- Long lived particles result either from small mass splitting (chargino in MSSM) or from suppressed couplings (heavy neutrino in neutrino mass models)
- Lifetime crucially depends on mass splitting

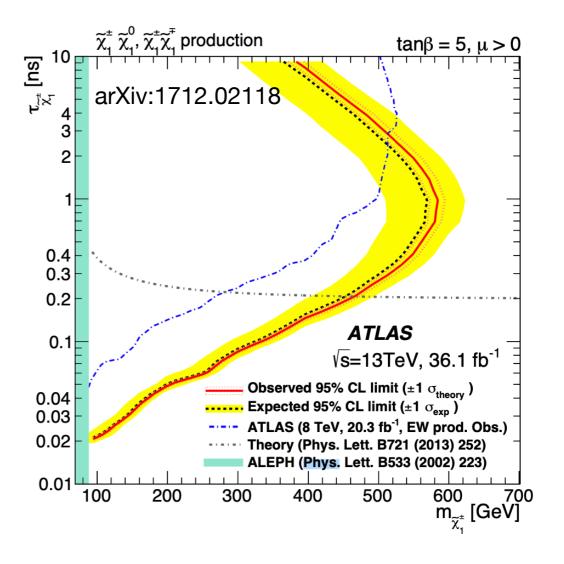
$$M_{\tilde{C}} = \begin{pmatrix} 0 & X^T \\ X & 0 \end{pmatrix}$$
 where $X = \begin{pmatrix} M_2 & \sqrt{2}s_{\beta}m_W \\ \sqrt{2}c_{\beta}m_W & \mu \end{pmatrix}$
$$\delta m_{\mathrm{tree}} = m_{\tilde{C}_1} - m_{\tilde{N}_1} = \frac{m_W^4}{\mu^2 M_1} \sin^2 2\beta \tan^2 \theta_W$$


- Two loop corrections for pure wino scenarios can be pretty relevant
- How do these corrections generalise to pure higgsino case and mixed scenarios?


hep-ph/9606211 arXiv:1712.00968 arXiv:1212.5989

Compare spectrum generators

- Analytical calculations for pure Wino-like chargino LLP exist up to two loops
- Question: How correct are the chargino LSP mass splitting prediction in spectrum generators?
 - Review spectrum generators; compare with theory predictions
- Understand if parameter space e.g. shown by CMS interpretation is feasible



 Lifetimes as predicted by the popular suspect2 spectrum generator demonstrate noticeable difference to theory prediction

Reinterpret searches

- Question: What is the true reach of these DT and HSCP searches for MSSM parameter space?
 - Reinterpret the LHC DT and (if applicable)
 HSCP analysis for chargino LLP within
 MSSM to correctly identify the reach of
 searches
- Searches are also applicable for simplified EW models
- Simplified EW models: loop corrections only arise from high dimensional operators
- Understand if the lifetime predictions are correctly calculated.

arXiv:1903.00013 arXiv:1410.4549

Conclusions

- As LHC searches become a powerful tool to explore new physics parameter space it becomes relevant to correctly predict features of the new physics parameter space
- These involve lifetimes and mass splittings of degenerate particles and it in turn affects our understanding of the impact of LHC searches
- We will investigate the impact of these loop corrections some of which are documented in the literature on the chargino parameter space within the MSSM
- We will demonstrate the effect of model dependent exclusion of DT analyses
- We will investigate the effect also for simplified EW models